Balancing Equations

coefficient: \qquad
subscript: \qquad
reactant: \qquad
product: \qquad

Law of Conservation of Matter

Atoms (matter) are not \qquad or \qquad during a chemical reaction.

Scientists know that there must be the \qquad number of atoms on each \qquad of the \qquad To balance the chemical equation, you must add \qquad in front of the chemical formulas in the equation. You cannot \qquad or \qquad subscripts!

A balanced chemical equation has the same number of each kind of atom on the \qquad side as on the \qquad side.

You must look at the \qquad to
balance an equation.
In order to determine whether an equation is balanced \qquad the
number in front of the chemical formula in the equation \square) by the number written below the symbol in the formula \qquad _).

The number of each kind of atom on the \qquad of the arrow must equal the number of each kind of atom on the \qquad of the arrow for the equation to be balanced.

Steps to Balance Equations

1) Determine number of atoms \qquad
2) Pick an element that is \qquad on both sides of the equation. Add a \qquad in front of the formula with that element and adjust your counts.
3) Continue adding coefficients to get the same number of atoms

Try These:

$\square \mathrm{Ca}+\square \mathrm{O}_{2}$	$\square \mathrm{CaO}$
$\mathrm{Ca}=$	$\mathrm{Ca=}$
$\mathrm{O}=$	$\mathrm{O}=$

$\mathrm{N}_{2}+\square \mathrm{H}_{2} \rightarrow \square \mathrm{NH}^{2}$
$\mathrm{N}=\quad \mathrm{N}=$
$\mathrm{H}=$
$\mathrm{H}=$

$\mathrm{Mg}=\quad \mathrm{Mg}=$
\qquad ـ.

Balancing Act Practice

Balance each equation. Be sure to show your lists! Remember you cannot add subscripts or place coefficients in the middle of a chemical formula.

1. $\mathrm{Na}+\mathrm{MgF}_{2} \rightarrow \mathrm{NaF}+\mathrm{Mg}$
2. $\mathrm{Mg}+\mathrm{HCl} \rightarrow \quad \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
3. $\mathrm{Cl}_{2}+\mathrm{KI} \rightarrow \mathrm{KCl}+\mathrm{I}_{2}$
4. $\quad \mathrm{NaCl} \rightarrow \quad \mathrm{Na}+\quad \mathrm{Cl}_{2}$
5. $\mathrm{Na}+\mathrm{O}_{2} \rightarrow \quad \mathrm{Na}_{2} \mathrm{O}$
6. $\mathrm{Na}+\mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{NaCl}$
7. $\mathrm{K}+\mathrm{Cl}_{2} \rightarrow \mathrm{KCl}$

Challenge: This one is tough!

$$
\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

