| Name:                                            |                         | Date            | ): | Period: |  |  |  |  |
|--------------------------------------------------|-------------------------|-----------------|----|---------|--|--|--|--|
| Chemical and Physical Changes Caused by Heat Lab |                         |                 |    |         |  |  |  |  |
| Grad                                             |                         | Teacher remarks |    |         |  |  |  |  |
| Safety violations: -5 points                     | Question                | 5               |    |         |  |  |  |  |
|                                                  | Background Information  | 25              |    |         |  |  |  |  |
|                                                  | Prediction / Hypothesis | 10              |    |         |  |  |  |  |
|                                                  | Safety precautions      | 15              |    |         |  |  |  |  |
|                                                  | Data table              | 20              |    |         |  |  |  |  |
| Procedure violations: -5 points                  | Conclusion              | 25              |    |         |  |  |  |  |
|                                                  | Errors & New Questions  | 10              |    |         |  |  |  |  |
|                                                  | Point deductions        |                 |    |         |  |  |  |  |
|                                                  | Final grade             | 100             |    |         |  |  |  |  |

#### Question:\_\_\_\_\_

## **Background Information:**

Chemical Reaction-\_\_\_\_\_

Phase Change-

Reactant-

Product-\_\_\_\_\_

#### Heat's affect on substances

- Substances react differently to heat, according to their
   \_\_\_\_\_ and \_\_\_\_\_
- Substances that are \_\_\_\_\_\_ or \_\_\_\_\_
  may \_\_\_\_\_
- Substances may \_\_\_\_\_, or \_\_\_\_\_ and \_\_\_\_\_ depending on their

| Chemical Changes                                             |                  |  |  |  |  |  |  |
|--------------------------------------------------------------|------------------|--|--|--|--|--|--|
| In some cases, heating a substance can cause it to undergo a |                  |  |  |  |  |  |  |
| change, and a new substance (or more) w                      | ill be           |  |  |  |  |  |  |
| formed from the old one.                                     |                  |  |  |  |  |  |  |
| (when it catches fire), it reacts with the                   |                  |  |  |  |  |  |  |
| in the air to produce                                        |                  |  |  |  |  |  |  |
| Physical Changes                                             |                  |  |  |  |  |  |  |
| In other cases, substances may have a high ignition point ar | nd will not      |  |  |  |  |  |  |
| catch fire, but its will begin moving faster                 | , causing it     |  |  |  |  |  |  |
| to, or increase in                                           | , or increase in |  |  |  |  |  |  |
| Example: heating a steamer bag of vegetables will cause the  |                  |  |  |  |  |  |  |
| in the veggies to                                            | _ (change        |  |  |  |  |  |  |
| from a liquid to a gas) and the gas will as far a            |                  |  |  |  |  |  |  |
| the bag will allow.                                          |                  |  |  |  |  |  |  |
| Example: If is heated above it's                             |                  |  |  |  |  |  |  |
|                                                              |                  |  |  |  |  |  |  |
| Prediction:                                                  |                  |  |  |  |  |  |  |

### **Safety Precautions**







### **Procedures:**

- 1. Place ONE scoop of the first substance into a test tube.
- 2. Examine the substance and record your observations in the correct box of your data table.

\_\_\_\_

- 3. Attach the test tube clamp near the mouth of the test tube.
- 4. Heat the bottom of the test tube for 1-2 minutes. Keep the test tube moving to evenly heat the substance, and remember not to point it at

anyone.

- 5. Record any changes that occur to the substance while it is being heated in the appropriate box of your data table.
- Place the hot test tube into a 250 ml beaker, and allow it to cool for 1-2 minutes. Examine the substance again, and record your observations in the appropriate box of your data table.
- 7. Repeat these procedures with the remaining substances, using a clean test tube.

| Substance                | Appearance before heating | Change observed during | Appearance after cooling | Type of change |
|--------------------------|---------------------------|------------------------|--------------------------|----------------|
|                          |                           | neating                |                          |                |
| Sucrose                  |                           |                        |                          |                |
|                          |                           |                        |                          |                |
| Ammonium<br>Chloride     |                           |                        |                          |                |
|                          |                           |                        |                          |                |
| Copper (II)<br>Carbonate |                           |                        |                          |                |
|                          |                           |                        |                          |                |
| Copper (II)<br>Sulphate  |                           |                        |                          |                |
| Sodium                   |                           |                        |                          |                |
| Chloride                 |                           |                        |                          |                |
| Zinc Oxide               |                           |                        |                          |                |
|                          |                           |                        |                          |                |
| Sulfur                   |                           | <u> </u>               |                          |                |

## Data & Observations:

# Conclusion:

1. Which Substance (if any) showed no change when heated?

- 2. Which of these substances produced new substances when heated?
- 3. How can heating a substance help you identify it?
- 4. Which of the substances behave similarly while heating? Explain.
- 5. Which substances looked different after being heated?
- 6. Which substances still looked different after cooling? Explain what you think this means.
- 7. Did any of the substances not react to the heat? Which one(s)?
- 8. Why do you think it didn't do anything?

#### **Errors & New Questions:**

Systemic Errors:\_\_\_\_\_

Random Errors:\_\_\_\_\_

New Questions:\_\_\_\_\_