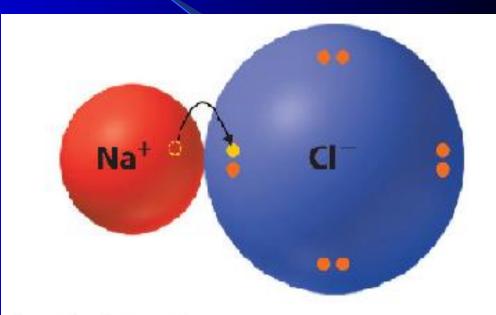
# 

#### **Bonding Atoms**

- Why do atoms bond?
  - each atom wants a full outermost energy level
  - gain, lose, and share valence electrons to achieve the <u>duet</u> or <u>octet</u> rule aka: "being happy"
  - gives each atom an electron configuration similar to that of a <u>noble gas</u>
    - ex. Group 18: He, Ne, Ar

#### **Chemical Bonds**


- Chemical Bonds
  - attractive force that holds atoms or ions together
  - 2 typesionic & covalent
  - determines the structure of compound
  - structure affects properties
    - melting/boiling pts, conductivity etc.

#### **Ionic Bonds / Ionic Compounds**

- Definition
- bond formed by the attraction between cations (positive: lost electrons) and anions (negative: gained electrons). Cations are always metals and anions are always nonmetals.
- oppositely charged ions attract each other and form an ionic bond
  - ex.  $Na^+ + Cl^- = NaCl$
  - electrons are transferred from one atom to another
  - negative ions attract more positive ions, and soon a network is formed

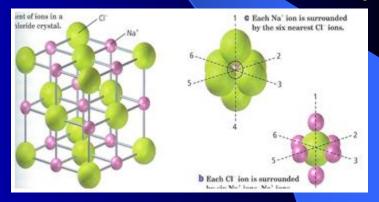
#### ex. $Na^+ + Cl^- = NaCl$

electrons are transferred from one atom to another



#### Ionic bond

Complete transfer of one or more valence electrons.


Full charges on resulting ions.

#### Networks / Crystal Lattices

negative ions attract more positive ions, and soon a network of a repeating pattern of multiple ions is formed

ex. NaCl - every Na ion is next to 6 Cl ions, and every

Cl ion is surrounded by 6 Na ions.



- strong attraction between ions creates a rigid framework, or <u>lattice</u> structure: aka: crystals ex: cubes, hexagons, tetragons

## Properties of Ionic Compounds

- strong attractions between ions: strong bonds
  - high melting/boiling pt
  - shatter when struck (think of it as one unit)
  - conductivity

solid: ions are so close together, fixed positions, (can't move)

NO conductivity

liquid: ions are freely moving due to a broken lattice structure

Good conductivity

#### Naming Ions

- Monoatomic Ions
  - cation
    - -name of element with <u>ion</u>
      - ex. (Na) Sodium (Na+) Sodium ion
  - anion
    - name of element with the suffix <u>—ide</u> ex. (Br) Bromine (Br-) Bromide
- Ions with multiple cations
  - transition metals
  - most form 2+, 3+ and 4+
    - ex. Cu<sup>+</sup>, Cu<sup>2+</sup>

## Naming Ionic Compounds

- Naming ionic compounds (binary)
  Formula to Name
  - name of <u>cation</u> followed by the name of the <u>anion</u>
    - ex. NaCl: Sodium Chloride
  - formulas must indicate the relative number of cations and ions if transitional

ZnO: Zinc (II) Oxide

CuCl<sub>2</sub>: Copper (II) Chloride

## Naming Ionic Compounds

Practice Problems

MgBr<sub>2</sub>

KI

CuCl<sub>2</sub>

Fe<sub>2</sub>S<sub>3</sub>

Magnesium Bromide

Potassium Iodide

Copper (II) Chloride

Iron (III) Sulfide

## Practice Problems

- Write the formula for the following atoms
  - a. lithium oxide

b. beryllium chloride

c. titanium (III) nitride

d. copper (II) bromide

Li<sub>2</sub>O

BeCl<sub>2</sub>

TiN

CuBr<sub>2</sub>