Newton's Laws of Motion Notes

Background: Sir Isaac Newton (1643-1727) an \qquad
\qquad
famous for his discovery of the \qquad __.
He published them in his book Philosophiae Naturalis Principia Mathematica () in 1687.
Today these laws are known as Newton's Laws of Motion and describe the motion of all objects on the scale we experience in our everyday lives.

Vocabulary
Inertia: \qquad

Acceleration: \qquad

Velocity: \qquad

Force: \qquad

Newton's First Law

An object at rest tends to stay at rest and an object in motion tends to stay in motion unless acted upon by an unbalanced force.

Basically, an object will " \qquad " unless acted on by an \qquad force.

If the object was sitting still, it will remain \qquad If it was moving at a constant velocity, it will \qquad _.

It takes \qquad to change the motion of an object.

If the forces on an object are \qquad and \qquad ,
they are said to be \qquad , and the object experiences no then the forces are in motion. If they are \qquad equal and opposite,
\qquad and the motion of the object
\qquad -.

Newton's First Law is also called the
Inertia: the tendency of an object to \qquad changes in its state of motion

The First Law states that \qquad have inertia. The \qquad mass an object has, the \qquad inertia it has (and the \qquad it is to change its motion).

So why do moving objects eventually stop moving?

Things don't keep moving forever because there's almost always an
\qquad force acting upon them.
\qquad and \qquad are constantly at work on
moving objects. \qquad energy is used to overcome friction, so eventually an object will run out of energy and come to a stop. Falling objects eventually meet the earth, which exerts an opposite force, causing them to stop.

In outer space, away from gravity and any sources of friction, a rocket ship launched with a certain speed and direction would \qquad .

Newton's Second Law

Force equals mass times acceleration.
Formula: \qquad
Force is directly proportional to \qquad and \qquad . Imagine a ball of a certain mass moving at a certain acceleration. This ball has a certain force.

Now imagine we make the ball twice as big (\qquad but keep the acceleration constant. $\mathrm{F}=$ ma says that this new ball has
\qquad of the old ball.

Now imagine the original ball moving at twice the original
\qquad . $\mathrm{F}=$ ma says that the ball will again have \qquad of the ball at the original acceleration.
basically means that the \qquad comes
from its mass and its acceleration.
Something very massive (\qquad) that's changing speed very slowly (\qquad), like a glacier, can still have \qquad force.
Something very small (\qquad) that's changing speed very quickly (
\qquad chang
\qquad force.
Something very changing speed very \qquad will have a very \qquad force.

Newton's Third Law

For every action there is an equal and opposite reaction.
For every force acting on an object, there is an \qquad acting in the \qquad direction. Right now, gravity is pulling
you \qquad in your seat, but Newton's Third Law says your seat is pushing \qquad against you with \qquad force. This is why you are not moving. There is a \qquad force acting on you- gravity pulling down, your seat pushing up.

What happens if you are standing on a skateboard or a slippery floor and push against a wall? You direction (\qquad the wall), because you pushed on the wall but the wall pushed back on you with equal and opposite force.

Why does it hurt so much when you stub your toe? When your toe a rock, the rock exerts \qquad
\qquad back on your toe. The \qquad you hit your
toe against it, the \qquad force the rock exerts back on your toe (and the more your toe hurts).

