Newton's Laws of Motion Notes

Background: Sir Isaac Newton (1643-1727) an
famous for his discovery of the
also discovered the three
He published them in his book <u>Philosophiae Naturalis Principia Mathematica</u> () in 1687.
Today these laws are known as <i>Newton's Laws of Motion</i> and describe the
motion of all objects on the scale we experience in our everyday lives.
Vocabulary
Inertia:
Acceleration:
 Velocity:
 Force:
Newton's First Law
An object at rest tends to stay at rest and an object in motion tends to stay in motion unless acted upon by an unbalanced force.
Basically, an object will "
unless acted on by an force.
If the object was sitting still, it will <i>remain</i> . If it was moving at a constant velocity, it will
It takes to change the motion of an object.
If the forces on an object are and,
they are said to be, and the object experiences no
in motion. If they are equal and opposite,
then the forces are and the motion of the object

Newton's First Law is also called the _____

Inertia: the tendency of an object to _____ changes in its state of motion

The First Law states that ______ have inertia. The _____ mass an object has, the ______ inertia it has (and the ______ it is to change its motion).

So why do moving objects eventually stop moving?

Things don't keep moving forever because there's almost always an ______ force acting upon them.

______and ______are constantly at work on moving objects. ______energy is used to overcome friction, so eventually an object will run out of energy and come to a stop. Falling objects eventually meet the earth, which exerts an opposite force, causing them to stop.

In outer space, away from gravity and any sources of friction, a rocket ship launched with a certain speed and direction would ______

Newton's Second Law

Force equals mass times acceleration.

Formula:

Force is *directly proportional* to ______ and _____ Imagine a ball of a certain mass moving at a certain acceleration. This ball has a certain force.

Now imagine we make the ball twice as big (______) but keep the acceleration constant. F = ma says that this new ball has of the old ball.

Now imagine the original ball moving at twice the original ______. F = ma says that the ball will again have ______

______of the ball at the original acceleration.

basically means that the _____ comes from its mass and its acceleration.

Something very massive () that's cha	nging speed very
slowly (), like a glacier, can still h	nave
force.		
Something very small () that's changin	g speed very quickly
(), li	ke a bullet, can still have a	force.
Something very	_ changing speed very	will have a
very force.		

Newton's Third Law

For every action there is an equal and opposite reaction.

For every force acting on an object	ct, there is an acting
in the	_ direction. Right now, gravity is pulling
you in your seat, bu	t Newton's Third Law says your seat is
pushing against you with	n <i>force</i> . This is why you are not
moving. There is a	<i>force</i> acting on you– gravity
pulling down, your seat pushing u	ıp.

What happens if you are standing on a skateboard or a slippery floor and push against a wall? You ______ direction (_______ the wall), because you pushed on the wall but the wall pushed back on you with equal and opposite force.

Why does it hurt so much when you stub your toe? When your toe a rock, the rock exerts

	_ back on your toe. The	you hit your
toe against it, the	force the rock	exerts back on your toe (and
the more your toe	hurts).	