WORK \& POWER NOTES

What is work?

Work is the \qquad that takes place when a \qquad causes an
object to \qquad -.
work done is measured in \qquad
force is measured in \qquad
\qquad
distance is measured in \qquad

Am I doing work?

In scientific terms, work is done when \qquad

Doing work: lifting a stack of books; Force exerted \qquad books move \qquad
Not doing work: holding books: Force exerted \qquad books move \qquad
\qquad books move \qquad

Is work being done?

\qquad Picking up a heavy boxDoing pushupsLeaning against the wallPushing a child on a swingSitting in a chair

Calculating work

Work = \qquad (in \qquad) x \qquad Moved (in \qquad _)

Work is measured in \qquad (___),), which is the same thing as a
scientific unit called a \qquad __)
If you exert \qquad of force to move an object \qquad , you have done \qquad of work.

Example: who is doing more work?

Same lifts a 100 N plant 0.5 m from the ground onto a bench, while Eddie lifts a 75 N plant 1.0 m from the ground onto a table.

$\mathrm{W}=\mathrm{FD}$	$\mathrm{W}=\mathrm{FD}$
$\mathrm{F}=100 \mathrm{~N}$	$\mathrm{~F}=75 \mathrm{~N}$
$\mathrm{D}=0.5 \mathrm{~m}$	$\mathrm{D}=1.0 \mathrm{~m}$

Calculating Unknown Quantities

You can use the magic triangle to calculate \qquad and \qquad $55,000 \mathrm{~J}$ of work is done to move a rock 25 m . How much force is applied?

$1 \mathrm{~J}=$	$\mathrm{F}=\frac{\mathrm{W}}{\mathrm{D}}=$
$\mathrm{W}=$	

$\mathrm{D}=$

Work \& Time = Power

The \qquad done on an object is \qquad by
how long it takes to do the work; you will still do the same amount of work carrying a stack
of books up the stairs if you \qquad or \qquad _.
\qquad is the amount of work done on an object \qquad —,
therefore the \qquad applied to do work, \qquad the work gets
done.

Calculating power

Power is measured in \qquad , which is called a \qquad (__)
\qquad
\qquad of force to move an object \qquad in \qquad $1 \mathrm{~W}=$ \qquad
A watt is a \qquad unit of power, so power is often measured in
\square _)
\qquad $\mathrm{W}=1 \mathrm{~kW}$

Electricity is billed in \qquad .

Engine power is measured in \qquad (not a scientific unit.)
$1 \mathrm{hp}=$ \qquad W; when the \qquad was developed a contest was held that determined that it would take \qquad to do the same amount of \qquad as the engine could do \qquad .

Calculating Power

Power $=$
or Power $=$
a tow truck exerts a force of $11,000 \mathrm{~N}$ to pull a car out of a ditch. The car moves a distance of 5 m in 25 seconds. What is the power rating of the tow truck's winch?
$\mathrm{F}=$
$\mathrm{D}=$
$\mathrm{t}=$

Calculating unknown Quantities

You can also use the magic triangle to calculate power
How much work is done by a 75 W hair dryer that is used for 25 minutes?

$1 \mathrm{~W}=$
$\mathrm{P}=$
$\mathrm{T}=$

Practice problems

A fork lift moves 34 m pushing a 1023 N box across the warehouse floor. How much work is done by the fork lift.

How much work is done by a person who uses a force of 27.5 N to move a grocery buggy 12.3 m ?

You and 3 friends apply a combined force of 489.5 N to push a piano. The amount of work done is 1762.2 J . What distance did the piano move?

A set of pulleys lifts a piano and does 3,356 joules of work. If the piano is lifted in 75 seconds, how much power is used?

How much work is done in order to cook a bag of popcorn in a 500 watt microwave oven for 5.5 minutes?

Sara and Josh do the exact same amount of work. Sara does the work in 2.3 hours and Josh does it in 2.5 hours. Who is more powerful? Explain

