WORK \& POWER

WHAT IS WORK?

- Work is the energy transfer that takes place when a force causes an object to move.

$$
\begin{aligned}
& \text { work done }=\text { force applied } \times \text { distance moved } \\
& \text { in direction of force } \\
& \qquad W=F D
\end{aligned}
$$

- work done is measured in joules (J)
- force is measured in newtons (N)
- distance is measured in metres (m)

AM I DOING WORK?

- In scientific terms, work is done when a force is applied to an object, causing it to move in the direction of the applied force.
- Doing work: lifting a stack of books; a force is exerted upwards, and the books move upward.
- Not doing work: holding a stack of books: you are exerting an upward force on the books, but the books re not moving.
- Not doing work: Carrying the stack of books across the room: you area exerting an upwards force on the books, but the books are moving horizontally across the room.

ISWORK BEING DONE?

- Picking up a heavy box
- Doing pushups
- Leaning against the wall
- Pushing a child on a swing
- Sitting in a chair

CALCULATING WORK

- Work $=$ Force (in Newtons) \times Distance Moved (in meters)
- Work is measured in Newton meters $(N \cdot m)$, which is the same thing as a scientific unit called a Joule (J)
- If you exert one Newton of force to move an object one meter, you have done one joule of work.

EXAMPLE:WHO IS DOING MOREWORK?

- Same lifts a 100 N plant 0.5 m from the ground onto a bench, while Eddie lifts a 75 N plant 1.0 m from the ground onto a table.
- W=FD
$F=100 \mathrm{~N}$
$D=0.5 \mathrm{~m}$
$W=(100 \mathrm{~N})(0.5 \mathrm{~m})$
$=50 \mathrm{~N} \cdot \mathrm{~m}$
Sam did 50 J of work

$$
\begin{aligned}
& W=F D \\
& F=75 \mathrm{~N} \\
& D=1.0 \mathrm{~m}
\end{aligned}
$$

$$
W=(75 \mathrm{~N})(\mathrm{I} .0 \mathrm{M})
$$

$$
=75 \mathrm{~N} \cdot \mathrm{~m}
$$

Eddie did 75 J of work

CALCULATING UNKNOWN QUANTITIES

- You can use the magic triangle to calculate Force and distance.
- $55,000 \mathrm{~J}$ of work is done to move a rock 25 m . How much force is applied?

I J = I N•m
$\mathrm{W}=55,000 \mathrm{~N} \cdot \mathrm{~m}$
$D=25 \mathrm{~m}$

$$
\mathrm{F}=\underline{\mathrm{W}}=\underline{55,000 \mathrm{~N} \cdot \mathrm{~m}}=2200 \mathrm{~N}
$$

$$
\text { D } \quad 25 \mathrm{~m}
$$

WORK \& TIME = POWER

- The amount of work done on an object is not affected by how long it takes to do the work; you will still do the same amount of work carrying a stack of books up the stairs if you walk or run.
- Power is the amount of work done on an object per unit of time, therefore the more power applied to do work, the faster the work gets done.

CALCULATING POWER

- Power is measured in $\mathrm{N} \cdot \mathrm{m} / \mathrm{s}$, which is called a watt (W)
- I W of power is used to exert I N of force to move an object Im in I second.
- IW = I J/s
- A watt is a very small unit of power, so power is often measured in kilowatts (kW)
- $1000 \mathrm{~W}=1 \mathrm{~kW}$
- Electricity is billed in killowatts per hour.
- Engine power is measured in horsepower (not a scientific unit.)
- I $\mathrm{hp}=746 \mathrm{~W}$; when the steam engine was developed a contest was held that determined that it would take 746 horses to do the same amount of work as the engine could do in one hour.

CALCULATING POWER

$$
\text { - Power }=\frac{\text { work }}{\text { time }} \quad \text { or Power }=\frac{\text { force } \times \text { distance }}{\text { time }}
$$

- a tow truck exerts a force of $I I, 000 \mathrm{~N}$ to pull a car out of a ditch. The car moves a distance of 5 m in 25 seconds. What is the power rating of the tow truck's winch?

$$
\begin{aligned}
& F=1 I, 000 \mathrm{~N} \\
& D=5 \mathrm{~m} \\
& t=25 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
& P=\frac{(\text { force })(\text { distance })}{\text { (time) }} \\
& P=\frac{(11,000 \mathrm{~N})(5 \mathrm{~m})}{(25 \mathrm{~s})}=\frac{55,000 \mathrm{~J}}{25 \mathrm{~s}}=2200 \mathrm{~J} / \mathrm{s}
\end{aligned}
$$

$$
\mathrm{P}=2200 \mathrm{~W} \text { of } 2.2 \mathrm{~kW}
$$

CALCULATING UNKNOWN QUANTITIES

- You can also use the magic triangle to calculate power

How much work is done by a 75 W hair dryer that is used for 25 minutes?

$$
\begin{aligned}
& \mathrm{I} W=\mathrm{I} \mathrm{~J} / \mathrm{s} \\
& \mathrm{P}=75 \mathrm{~J} / \mathrm{s} \\
& \mathrm{~T}=25 \mathrm{~m}(60 \mathrm{~s})=1500 \mathrm{~s}
\end{aligned}
$$

$$
\begin{aligned}
W & =(P)(T) \\
& =(75 \mathrm{~J} / \mathrm{s})(1500 \mathrm{~s}) \\
& =112,500 \mathrm{~J}
\end{aligned}
$$

